Funding and Research

The main research subjects we are focusing on are

  • Novel luminescent nanomaterials for nanophotonics

  • Charge carrier and exciton dynamics control in quantum dots and their assemblies

  • Photoinduced electron transfer control in donor-acceptor systems and nanomaterials

  • Novel fluorescent molecular sensors

  • Molecular- and nano-bioconjugates for bioimaging

In these research subjects, we employ steady-state and time-resolved fluorescence spectroscopy, single molecule fluorescence microspectroscopy, and laser trapping microspectroscopy.

   Please see our publication list also (click here to link)

Creation of novel nanomaterials and organic molecules for photonics

We develop luminescent semiconductor nanomaterials which have unique electronic and optical properties. These include lead halide perovskites and chalcogenide quantum dots.

We investigate the charge carrier, fluorescence and electron transfer dynamics of the above nanomaterials at the ensemble and single-molecule levels.

We develop molecular sensors of oxidative stress and biological electron transfer reactions. These sensors include organic electron donor-acceptor dyads.

We develop biomolecular assemblies and perovskite crystals by optical trapping.

Control of charge carrier dynamics and fluorescence blinking in nanomaterials

Groundbreaking advances in photo-voltaic and optoelectronic technologies depend mostly on a realization of novel materials having unique optical properties.

We focus a part of our effort on the design and development of novel photo-active nanomaterials in one, two, and three dimensions, with an emphasis on precisely controlling the optical activity.

Organic and inorganic molecules are our raw materials and wet thermal chemistry and photochemistry are our tools. By optimally controlling the size, shape, and composition of nanomaterials, we generate unique fluorescence, phosphorescence and photothermal properties.

Subsequently, such nanomaterials will be applied to selected problems in biosensing, bioimaging, energy harvesting, and environmental remediation.


Chemical syntheses for detection and optical control of biomolecular functioning in living cells

 Optical control (light control) on the matter is a powerful and promising method because it can achieve precise spatiotemporal control (<μm, <nsec scale).

   Our group develops photo-functional organic molecules and nanomaterials for efficient control and detection of living cellular activities.

This technology will contribute to developing novel bio prove for chemical biology and phototherapy for medicine, including emerging cancer phototherapy.

   For this purpose, we design, synthesize and investigate new molecules and nanomaterials which possess controllable and efficient photoexcited states.

Bio-Nano Interface

Exploration of the interface between biology and nanoscience not only resolves fundamental problems in laboratory life science but also reforms our lives.

Our laboratory is interested in developing novel nanobioconjugates, and molecular probes, and applying the conjugates to pinpoint the functioning of biomolecules at the single-molecule and single-cell levels.

Manipulation of molecules and nanomaterials using laser tweezers

We are developing optical manipulation methods by means of laser-trapping to fabricate nanostructures for photonics.

Laser-trapping can achieve selective growth of crystals in nano- micro-meter scales and locally selective substitution of crystals.

We believe this methodology will open a door for future technology to control the structure of materials on demand.



Selected publication 2016-2001 (V.P. Biju)

Original paper:

1.     Intracellular accumulation of indium ions released from nanoparticles induces oxidative stress, proinflammatory response and DNA damage

Tabei, A. Sonoda, Y. Nakajima, V. Biju, Y. Makita, Y. Yoshida and M. Horie, J. Biochem., 2016, 159, 225-237.

2.     Single-particle spectroscopy of I-III-VI semiconductor nanocrystals: spectral diffusion and suppression of blinking by two-color excitation

K. Sharma, S. Hirata, L. Bujak, V. Biju, T. Kameyama, M. Kishi, T. Torimoto and M. Vacha, Nanoscale, 2016, 8, 13687-13694.

3.     Fluorescence detection of the pathogenic bacteria Vibrio harveyi in solution and animal cells using semiconductor quantum dots

Arshad, A. Anas, A. Asok, C. Jasmin, S. S. Pai, I. S. B. Singh, A. Mohandas and V. Biju, RSC Adv., 2016, 6, 15686-15693.

4.     Sensing of ozone based on its quenching effect on the photoluminescence of CdSe-based core-shell quantum dots

Ando, T. Kamimura, K. Uegaki, V. Biju and Y. Shigeri, Microchim. Acta, 2016, 183, 3019-3024.

5.     Auger ionization beats photo-oxidation of semiconductor quantum dots: extended stability of single-molecule photoluminescence

Yamashita, M. Hamada, S. Nakanishi, H. Saito, Y. Nosaka, S. I. Wakida and V. Biju, Angew. Chem. Int. Ed., 2015, 54, 3892-3896.

6.     In vitro evaluation of the cellular effect of indium tin oxide nanoparticles using the human lung adenocarcinoma A549 cells

Tabei, A. Sonoda, Y. Nakajima, V. Biju, Y. Makita, Y. Yoshida and M. Horie, Metallomics, 2015, 7, 816-827.

7.     Fluorescence quenching of CdSe/Zns quantum dots by using black hole quencher molecules intermediated with peptide for biosensing application

S. Pillai, H. Yukawa, D. Onoshima, V. Biju and Y. Baba, Cell Med., 2015, 8, 57-62.

8.     Fluctuating single sp2 carbon clusters at single hotspots of silver nanoparticle dimers investigated by surface-enhanced resonance raman scattering

Itoh, Y. S. Yamamoto, V. Biju, H. Tamaru and S. Wakida, AIP Adv., 2015, 5, 127113.

9.     Nanoparticles speckled by ready-to-conjugate lanthanide complexes for multimodal imaging

Biju, M. Hamada, K. Ono, S. Sugino, T. Ohnishi, E. S. Shibu, S. Yamamura, M. Sawada, S. Nakanishi, Y. Shigeri and S. Wakida, Nanoscale, 2015, 7, 14829-14837.

10.  SERS microscopic imaging as novel tool for assessing viability and enumerating yeast cells at various stages of cell cycle in lag, log, exponential and stationary phases of growth in culture

S. Kiran, T. Itoh, H. Abe, Y. Fujita, K. Tomimoto, V. Biju, S. Kavitha, A. Ganamani and M. Ishikawa, J. Exp. Nanosci., 2014, 9, 1003-1014.

11.  Draining out the last electron: photochemistry helps out solar cell technology (cover page and summary of issue 4/2014)

Hamada, N. Takenokoshi, K. Matozaki, Q. Feng, N. Murase, S. Wakida, S. Nakanishi and V. Biju, J. Phys. Chem. C, 2014, 118.

12.  In situ photochemical surface passivation of CdSe/ZnS quantum dots for quantitative light emission and enhanced photocurrent response in solar cells

Hamada, N. Takenokoshi, K. Matozaki, Q. Feng, N. Murase, S. Wakida, S. Nakanishi and V. Biju, J. Phys. Chem. C, 2014, 118, 2178-2186.

13.  Single quantum dot tracking reveals that an individual multivalent HIV-1 tat protein transduction domain can activate machinery for lateral transport and endocytosis

Suzuki, C. N. Roy, W. Promjunyakul, H. Hatakeyama, K. Gonda, J. Imamura, V. Biju, N. Ohuchi, M. Kanzaki, H. Higuchi and M. Kaku, Mol. Cell. Biol., 2013, 33, 3036-3049.

14.  Singlet-oxygen-sensitizing near-infrared-fluorescent multimodal nanoparticles

S. Shibu, S. Sugino, K. Ono, H. Saito, A. Nishioka, S. Yamamura, M. Sawada, Y. Nosaka and V. Biju, Angew. Chem. Int. Ed., 2013, 52, 10559-10563.

15.  Photouncaging nanoparticles for mri and fluorescence imaging in vitro and in vivo

S. Shibu, K. Ono, S. Sugino, A. Nishioka, A. Yasuda, Y. Shigeri, S. Wakida, M. Sawada and V. Biju, ACS Nano, 2013, 7, 9851-9859.

16.  Nanomaterials formulations for photothermal and photodynamic therapy of cancer

S. Shibu, M. Hamada, N. Murase and V. Biju, J. Photochem. Photobio. C, 2013, 15, 53-72.

17.  Impairments of cells and genomic DNA by environmentally transformed engineered nanomaterials

Jones, S. Sugino, S. Yamamura, F. Lacy and V. Biju, Nanoscale, 2013, 5, 9511-9516.

18.  Photofabrication of fullerene-shelled quantum dots supramolecular nanoparticles for solar energy harvesting

S. Shibu, A. Sonoda, Z. Q. Tao, Q. Feng, A. Furube, S. Masuo, L. Wang, N. Tamai, M. Ishikawa and V. Biju, ACS Nano, 2012, 6, 1601-1608.

19.  FRET from quantum dots to photodecompose undesired acceptors and report the condensation and decondensation of plasmid DNA

Biju, A. Anas, H. Akita, E. S. Shibu, T. Itoh, H. Harashima and M. Ishikawa, ACS Nano, 2012, 6, 3776-3788.

20.  Blinking suppression in semiconductor quantum dots for single-molecule imaging

Biju, Chem. Chem. Industry, 2011, 64, 625.

21.  Single-molecule FRET imaging for enzymatic reactions at high ligand concentrations

Sugawa, S. Nishikawa, A. H. Iwane, V. Biju and T. Yanagida, Small, 2010, 6, 346-350.

22.  Reversible dimerization of EGFR revealed by single-molecule fluorescence imaging using quantum dots

Kawashima, K. Nakayama, K. Itoh, T. Itoh, M. Ishikawa and V. Biju, Chem. Eur. J., 2010, 16, 1186-1192.

23.  Blinking suppression in CdSe/ZnS single quantum dots by TiO2 nanoparticles

Hamada, S. Nakanishi, T. Itoh, M. Ishikawa and V. Biju, ACS Nano, 2010, 4, 4445-4454.

24.  Bioconjugated quantum dots for cancer research: Present status, prospects and remaining issues

Biju, S. Mundayoor, R. V. Omkumar, A. Anas and M. Ishikawa, Biotechnol. Adv., 2010, 28, 199-213.

25.  Quantum dots for painting cells

Biju, Highlights in Chem. Biol. 2010, 6, 7.

26.  Clathrin-mediated endocytosis of quantum dot-peptide conjugates in living cells

Anas, T. Okuda, N. Kawashima, K. Nakayama, T. Itoh, M. Ishikawa and V. Biju, ACS Nano, 2009, 3, 2419-2429.

27.  Photoluminescence quenching and intensity fluctuations of cdse-zns quantum dots on an ag nanoparticle film

Matsumoto, R. Kanemoto, T. Itoh, S. Nakanishi, M. Ishikawa and V. Biju, J. Phys. Chem. C, 2008, 112, 1345-1350.

28.  Relations between dewetting of polymer thin films and phase-separation of encompassed quantum dots

Kanemoto, A. Anas, Y. Matsumoto, R. Ueji, T. Itoh, Y. Baba, S. Nakanishi, M. Shikawa and V. Biju, J. Phys. Chem. C, 2008, 112, 8184-8191.

29.  Semiconductor quantum dots and metal nanoparticles: Syntheses, optical properties, and biological applications

Biju, T. Itoh, A. Anas, A. Sujith and M. Ishikawa, Anal. Bioanal. Chem., 2008, 391, 2469-2495.

30.  Photosensitized breakage and damage of DNA by CdSe-ZnS quantum dots

Anas, H. Akita, H. Harashima, T. Itoh, M. Ishikawa and V. Biju, J. Phys. Chem. B, 2008, 112, 10005-10011.

31.  Combined spectroscopic and topographic characterization of nanoscale domains and their distributions of a redox protein on bacterial cell surfaces

Biju, D. Pan, Y. A. Gorby, J. Fredrickson, J. McLean, D. Saffarini and H. P. Lu, Langmuir, 2007, 23, 1333-1338.

32.  Quantum dot-insect neuropeptide conjugates for fluorescence imaging, transfection, and nucleus targeting of living cells

Biju, D. Muraleedharan, K. Nakayama, Y. Shinohara, T. Itoh, Y. Baba and M. Ishikawa, Langmuir, 2007, 23, 10254-10261.

33.  Photoinduced photoluminescence variations of CdSe quantum dots in polymer solutions

Biju, R. Kanemoto, Y. Matsumoto, S. Ishii, S. Nakanishi, T. Itoh, Y. Baba and M. Ishikawa, J. Phys. Chem. C, 2007, 111, 7924-7932.

34.  Fabrication of a quantum dot-polymer matrix by layer-by-layer conjugation

Ishii, R. Ueji, S. Nakanishi, Y. Yoshida, H. Nagata, T. Itoh, M. Ishikawa and V. Biju, J. Photochem. Photobio. A, 2006, 183, 285-291.

35.  Close-conjugation of quantum dots and gold nanoparticles to sidewall functionalized single-walled carbon nanotube templates

Biju, T. Itoh, Y. Makita and M. Ishikawa, J. Photochem. Photobio. A, 2006, 183, 315-321.

36.  Quenching of photoluminescence in conjugates of quantum dots and single-walled carbon nanotube

Biju, T. Itoh, Y. Baba and M. Ishikawa, J. Phys. Chem. B, 2006, 110, 26068-26074

37.  Temperature-sensitive photoluminescence of CdSe quantum dot clusters

Biju, Y. Makita, A. Sonoda, H. Yokoyama, Y. Baba and M. Ishikawa, J. Phys. Chem. B, 2005, 109, 13899-13905.

38.  Subsecond luminescence intensity fluctuations of single cdse quantum dots

Biju, Y. Makita, T. Nagase, Y. Yamaoka, H. Yokoyama, Y. Baba and M. Ishikawa, J. Phys. Chem. B, 2005, 109, 14350-14355.

39.  Intermittent single-molecule interfacial electron transfer dynamics

Biju, M. Micic, D. H. Hu and H. P. Lu, J. Am. Chem. Soc., 2004, 126, 9374-9381.

40.  Spatial heterogeneity in a polymer thin film probed by single molecules

P. Biju, J. Y. Ye and M. Ishikawa, J. Phys. Chem. B, 2003, 107, 10729-10735.

41.  Fabrication of standard samples for single-molecule fluorescence imaging

Biju, M. Takeuchi, K. Umemura, M. Gad and M. Ishikawa, Jpn. J. Appl. Phys. 1, 2002, 41, 1579-1586.

42.  Fluorophore modified microcontact prints: A methodology for readout using fluorescence microscopy

Biju, M. Gad, W. Mizutani, S. Murata and M. Ishikawa, J. Imaging Sci. Technol., 2002, 46, 155-158.

43.  Distribution of single molecules in polymer thin films

Biju, M. Yamauchi and M. Ishikawa, J. Photochem. Photobio. A, 2001, 140, 237-241.


Review paper:

1.     Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy

Biju, Chem. Soc. Rev. 2014, 43, 744-764

2.     Single-molecular surface-enhanced resonance raman scattering as a quantitative probe of local electromagnetic field: The case of strong coupling between plasmonic and excitonic resonance

Itoh, Y. S. Yamamoto, H. Tamaru, V. Biju, S. Wakida and Y. Ozaki, Phys. Rev. B, 2014, 89.

3.     Photoluminescence of Cd/Se and CdSe/ZnS quantum dots: Modifications for making the invisible visible at ensemble and single-molecule levels

S. Shibu, M. Hamada, S. Nakanishi, S. Wakida and V. Biju, Coord. Chem. Rev., 2014, 263, 2-12.

4.     Nanomaterials formulations for photothermal and photodynamic therapy of cancer

S. Shibu, M. Hamada, N. Murase and V. Biju, J. Photochem. Photobio. C, 2013, 15, 53-72.

5.     Single-molecule photochemical reactions of Auger-ionized quantum dots

Hamada, E. S. Shibu, T. Itoh, M. S. Kiran, S. Nakanishi, M. Ishikawa and V. Biju, Nano Rev., 2011, 2, 6366-6361-6365.

6.     Delivering q#uantum dots to cells: Bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging

Biju, T. Itoh and M. Ishikawa, Chem. Soc. Rev., 2010, 39, 3031-3056.


Book chapter:

1.     Prospects of semiconductor quantum dots for imaging and photodynamic therapy of cancer

Biju, S. Mundayoor, A. Anas, M. Ishikawa, Nanomaterials for Life Science, Wiley-VCH (2011).

2.     Photoluminescence of CdSe quantum dots: Shifting, enhancement, and blinking

Biju, M, Ishikawa, Molecular Nanodynamics, Volume I and II, pp.293-314, Wiley-VCH (2009).


Before 2017 (Y. Takano)

Original paper:

1.     Optical Control of Neuronal Firing via Photoinduced Electron Transfer in Donor–Acceptor Conjugates (Open access)

Y. Takano, T. Numata, K. Fujishima, K. Miyake, K. Nakao, W. D. Grove, R. Inoue, M. Kengaku, S. Sakaki, Y. Mori, T. Murakami, and H. Imahori,  Chem. Sci., 2016, 7, 3331-3337.

2.     Molecular Location Sensing Approach by Anisotropic Magnetism of an Endohedral Metallofullerene*

Y. Takano, R. Tashita, M. Suzuki, S. Nagase, H. Imahori and T. Akasaka, J. Am. Chem. Soc., 2016, 138, 8000-8006.

*Highlighted by “Chem-Station”

3.     The Unanticipated Dimerization of Ce@C2v(9)-C82 upon Co-crystallization with Ni(octaethylporphyrin) and Comparison with Monomeric M@C2v(9)-C82 (M = La, Sc, and Y)

M. Suzuki, M. Yamada, Y. Maeda, S. Sato, Y. Takano, F. Uhlik, Z. Slanina, Y. F. Lian, X. Lu, S. Nagase, M. M. Olmstead, A. L. Balch and T. Akasaka, Chem. Eur. J., 2016, 22, 18115-18122.

4.     Unprecedented Chemical Reactivity of a Paramagnetic Endohedral Metallofullerene La@Cs-C82 that Leads Hydrogen Addition in the 1,3-Dipolar Cycloaddition Reaction

Y. Takano, Z. Slanina, J. Mateos, T. Tsuchiya, H. Kurihara, F. Uhlik, M. A. Herranz, N. Martin, S. Nagase and T. Akasaka, J. Am. Chem. Soc., 2014, 136, 17537-17546.

5.     Thermodynamically Stable [4+2] Cycloadducts of Lanthanum-encapsulated Endohedral Metallofullerenes (Open access)

Y. Takano, Y. Nagashima, M. A. Herranz, N. Martin and T. Akasaka, Beilstein J. Org. Chem., 2014, 10, 714-721.

6.     Slow Charge Recombination and Enhanced Photoelectrochemical Properties of Diazaporphyrin-Fullerene Linked Dyad

M. Yamamoto, Y. Takano, Y. Matano, K. Stranius, N. V. Tkachenko, H. Lemmetyinen and H. Imahori, J. Phys. Chem. C, 2014, 118, 1808-1820.

7.     Intramolecular versus Intermolecular Electronic Interactions between [5,6]-Open and [6,6]-Closed C60 Adducts with exTTF

Y. Takano, C. Schubert, N. Mizorogi, L. Feng, A. Iwano, M. Katayama, M. A. Herranz, D. M. Guldi, N. Martin, S. Nagase and T. Akasaka, Chem. Sci., 2013, 4, 3166-3171.

8.     Electrochemical and Magnetic Properties of a Surface-Grafted Novel Endohedral Metallofullerene Derivative (Open access)

N. Crivillers, Y. Takano, Y. Matsumoto, J. Casado-Montenegro, M. Mas-Torrent, C. Rovira, T. Akasaka and J. Veciana, Chem. Commun., 2013, 49, 8145-8147.

9.     An Endohedral Metallofullerene as a Pure Electron Donor: Intramolecular Electron Transfer in Donor Acceptor Conjugates of La2@C80 and 11,11,12,12-Tetracyano-9,10-anthra-p-quinodimethane (TCAQ)

Y. Takano, S. Obuchi, N. Mizorogi, R. Garcia, M. A. Herranz, M. Rudolf, D. M. Guldi, N. Martin, S. Nagase and T. Akasaka, J. Am. Chem. Soc., 2012, 134, 19401-19408.

10.  Stabilizing Ion and Radical Ion Pair States in a Paramagnetic Endohedral Metallofullerene/pi-Extended Tetrathiafulvalene Conjugate

Y. Takano, S. Obuchi, N. Mizorogi, R. Garcia, M. A. Herranz, M. Rudolf, S. Wolfrum, D. M. Guldi, N. Martin, S. Nagase and T. Akasaka,  J. Am. Chem. Soc., 2012, 134, 16103-16106.

11.  Utilization of Photoinduced Charge-Separated State of Donor-Acceptor-Linked Molecules for Regulation of Cell Membrane Potential and Ion Transport

T. Numata, T. Murakami, F. Kawashima, N. Morone, J. E. Heuser, Y. Takano, K. Ohkubo, S. Fukuzumi, Y. Mori and H. Imahori, J. Am. Chem. Soc., 2012, 134, 6092-6095.

12.  Effects of Dihydronaphthyl-based [60]Fullerene Bisadduct Regioisomers on Polymer Solar Cell Performance

S. Kitaura, K. Kurotobi, M. Sato, Y. Takano, T. Umeyama and H. Imahori, Chem. Commun., 2012, 48, 8550-8552.

13.  Enantioselective Synthesis of Endohedral Metallofullerenes

K. Sawai, Y. Takano, M. Izquierdo, S. Filippone, N. Martin, Z. Slanina, N. Mizorogi, M. Waelchli, T. Tsuchiya, T. Akasaka and S. Nagase, J. Am. Chem. Soc., 2011, 133, 17746-17752.

14.  Introduction of Azetidinimine Skeleton on C60

Ueda, H. Nikawa, Y. Takano, M. O. Ishitsuka, T. Tsuchiya and T. Akasaka, Heteroat. Chem., 2011, 22, 426-431.

15.  Donor-Acceptor Conjugates of Lanthanum Endohedral Metallofullerene and pi-Extended Tetrathiafulvalene

Y. Takano, M. A. Herranz, N. Martin, S. G. Radhakrishnan, D. M. Guldi, T. Tsuchiya, S. Nagase and T. Akasaka, J. Am. Chem. Soc., 2010, 132, 8048.

16.  Retro-Reaction of Singly Bonded La@C82 Derivatives

Y. Takano, M. O. Ishitsuka, T. Tsuchiya, T. Akasaka, T. Kato and S. Nagase, Chem. Commun., 2010, 46, 8035-8036.

17.  Electron Donor-Acceptor Interactions in Regioselectively Synthesized exTTF2-C70(CF3)10 Dyads

Y. Takano, M. A. Herranz, N. Martin, G. D. Rojas, D. M. Guldi, I. E. Kareev, S. H. Strauss, O. V. Boltalina, T. Tsuchiya and T. Akasaka, Chem. -Eur J., 2010, 16, 5343-5353.

18.  Anisotropic Magnetic Behavior of Anionic Ce@C82 Carbene Adducts

Y. Takano, M. Aoyagi, M. Yamada, H. Nikawa, Z. Slanina, N. Mizorogi, M. O. Ishitsuka, T. Tsuchiya, Y. Maeda, T. Akasaka, T. Kato and S. Nagase, J. Am. Chem. Soc., 2009, 131, 9340-9346.

19.  Efficient Regioselective [4+2] Cycloaddition of o-Quinodimethane to C70(CF3)10

Y. Takano, M. A. Herranz, I. E. Kareev, S. H. Strauss, O. V. Boltalina, T. Akasaka and N. Martin, J. Org. Chem., 2009, 74, 6902-6905.

20.  Radical Coupling Reaction of Paramagnetic Endohedral Metallofullerene La@C82

Y. Takano, A. Yomogida, H. Nikawa, M. Yamada, T. Wakahara, T. Tsuchiya, M. O. Ishitsuka, Y. Maeda, T. Akasaka, T. Kato, Z. Slanina, N. Mizorogi and S. Nagase, J. Am. Chem. Soc., 2008, 130, 16224-16230.

21.  Nanorods of Endohedral Metallofullerene Derivative

T. Tsuchiya, R. Kumashiro, K. Tanigaki, Y. Matsunaga, M. O. Ishitsuka, T. Wakahara, Y. Maeda, Y. Takano, M. Aoyagi, T. Akasaka, M. T. H. Liu, T. Kato, K. Suenaga, J. S. Jeong, S. Iijima, F. Kimura, T. Kimura and S. Nagase, J. Am. Chem. Soc., 2008, 130, 450-451.

22.  Simple Purification and Selective Enrichment of Metallic SWCNTs Produced using the Arc-Discharge Method

Y. Maeda, Y. Takano, A. Sagara, M. Hashimoto, M. Kanda, S. I. Kimura, Y. Lian, T. Nakahodo, T. Tsuchiya, T. Wakahara, T. Akasaka, T. Hasegawa, S. Kazaoui, N. Minami, J. Lu and S. Nagase, Carbon, 2008, 46, 1563-1569.


Review paper:

1.     Intramolecular Electron Transfers in Donor/Acceptor Linked Molecules Based on Endohedral Lanthanide Metallofullerenes

Y. Takano, Fuller. Nanotub. Car. N., 2014, 22, 243-249.

2.     Rates and energetics of intramolecular electron transfer processes in conjugated metallofullerenes

Schubert, M. Rudolf, D. M. Guldi, Y. Takano, N. Mizorogi, M. A. Herranz, N. Martin, S. Nagase and T. Akasaka, Philos. T. R. Soc. A, 2013, 371, 20120490 .

3.     New Vistas in fullerene Chemistry: Organosulfur Compounds expand the Performance of Carbon Nanomaterials

T. Akasaka, T. Tsuchiya, L. Feng, Y. Takano and S. Nagase, Phosphorus Sulfur, 2013, 188, 317-321.

4.     Self-assembling porphyrins and phthalocyanines for photoinduced charge separation and charge transport

H. Imahori, T. Umeyama, K. Kurotobi and Y. Takano, Chem. Commun., 2012, 48, 4032-4045.

5.     Current Progress on the Chemical Functionalization and Supramolecular Chemistry of M@C82

Y. Maeda, T. Tsuchiya, X. Lu, Y. Takano, T. Akasaka and S. Nagase, Nanoscale, 2011, 3, 2421-2429.

6.     Organosulfur-Based Fullerene Materials

T. Nakahodo, M. O. Ishitsuka, Y. Takano, T. Tsuchiya, T. Akasaka, M. A. Herranz, N. Martin, D. M. Guldi and S. Nagase, Phosphorus Sulfur, 2011, 186, 1308-1311.

Book chapter:

1.     Endohedral Metallofullerenes: From Chemical Reactivity to Material Performance

M. Yamada, S. Sato, Y. Takano, L. Feng, S. Nagase and T. Akasaka, Chemical Science of pi-Electron Systems Part II. Curved pi-Electron Systems, ed. T. Akasaka, A. Osuka, S. Fukuzumi, H. Kandori and Y. Aso, Springer, Berlin, Germany, 2015, ch. 10.

2.     Fundamental and Applied Aspects of Endohedral Metallofullerenes as Promising Carbon Nanomaterials

M. Yamada, X. Lu, L. Feng, S. Sato, Y. Takano, S. Nagase and T. Akasaka, Organic Nanomaterials -Synthesis, Characterization, and Device Applications-, ed. T. Torres and G. Bottari, Wiley, London, U.K., 2013, ch. 12, pp. 241-258.